

ORC Turbines

About Us

MEDIGREEN ENERGY One offers its ORC based waste heat recovery turnkey solutions through its patented ORC turbines. Our scope covers the following:

- Design Engineering
- Project Management
- Technology Optimisation
- Turnkey Projects
- Operation & Maintenance
- Training
- Research & Development

Why Us

Our Vision

Be a leading driver for a commercially viable biofuel solutions globally

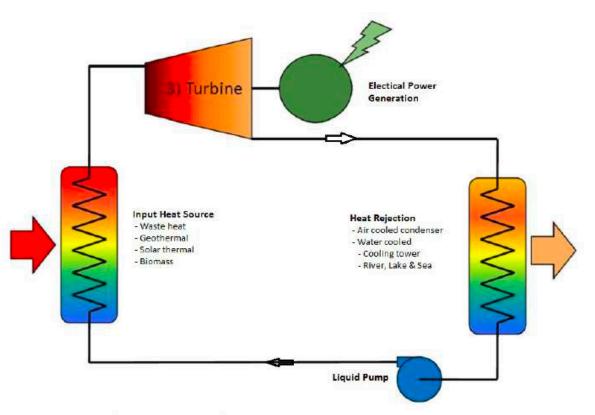
Our Mission

Our Mission to strive hard to achieve what has not been achieved hitherto and produce the world's best products & services in terms of quality, reliability and performance to serve the domain of biogas and translate our advanced technologies into value for our customers and stakeholders.

OUR EXPERIENCE – YOUR ADVANTAGE

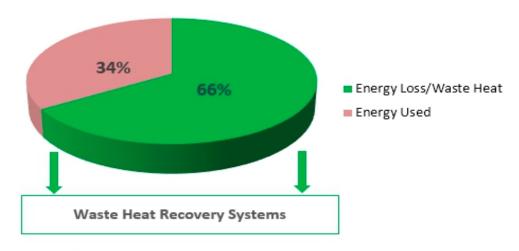
Standard & individual solutions	Transparency & know-how in implementation
Innovative ideas & mature concepts	Cost efficiency through a lean organization
Efficient processes & many years of experience	Social impact through local value creation

Our Facilities


Factory

Door No:2, First Floor M/s
Datta Guru Industries Gat no.53
Dehu Alandi Road Talawade Pune
Maharashtra

What is ORC Turbine?


Simple Schematic of the Organic Rankine Cycle process

The Process

- A high molecular mass fluid is evaporated (boiled) to produce vapor (gas) at high pressure (1).
- The high pressure gas is expanded through the ORC turbine, converting it into kinetic energy (in the form of rotation).
- A high efficiency, high speed permanent magnet generator connected to the turbine wheel converts the rotational kinetic energy into electrical energy.
- Once the gas has expanded it flows into a condenser, where heat is rejected and it condenses back into liquid state
- The liquid is then pumped back to high pressure
- The liquid passes through the liquid heater and evaporator where it becomes a high pressure gas and starts the cycle over again (1)

Waste Heat Sources

Uses of Waste Heat

Combustion Air PreHeating

Boiler Feed Water PreHeating

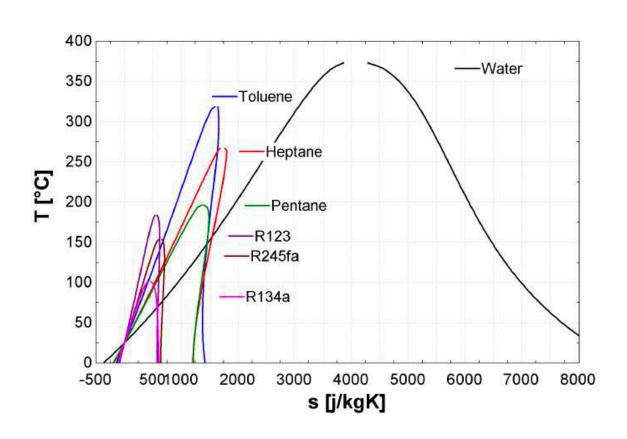
Power Generation

Steam Generation for Power Generation

Process Steam

Plant Comfort Heat

Water PreHeating


Transfer to Process Streams

ABsorption/ADsorption Chilling

Typical Waste Heat Temperatures*	°C	°F			
Nickel Refining Furnace	1370 - 1650	2498 - 3002			
Aluminum refining Furnace	650 - 760	1202 - 1400			
Zinc Refining Furnace	760 - 1100	1400 - 2012			
Copper Refining Furnace	760 - 815	1400 - 1499			
Steel Heating Furnace	925 - 1050	1697 - 1922			
Steam Boiler Exhausts	230 - 480	446 - 896			
Open Hearth Furnace	650 - 700	1202 - 1292			
Heat Treating Furnaces	425 - 650	797 - 1202			
Glass Melting Furnace	1000 - 1550	1832 - 2822			
Hydrogen Plants	650 - 1000	1202 - 1832			
Solid Waste Incinerators	650 - 1000	1202 - 1832			
Fume Incinerators	650 - 1450	1202 - 2642			
Gas Turbine Exhaust	370 - 540	698 - 1004			
Diesel Generator Exhaust	300 - 600	572 - 1112			
Hot Processed Liquids	32 - 232	89.6 - 450			
Welding Machines	32 - 88	89.6 - 190			
Air Compressors	27 - 50	80.6 - 122			
Pumps	27 - 88	80.6 - 190			
*http://www1.eere.energy.gov/manufacturing/intensivepr					
ocesses/pdfs/waste_heat_recovery.pdf					

Organic Working Fluids

- ✓ Dry fluids => no threat of damage for the turbine
- ✓ High vapor density
- ✓ Working fluid at low pressure(<30 bar)</p>
- ✓ Pressure in the condenser possibly higher than ambient pressure (no infiltration)

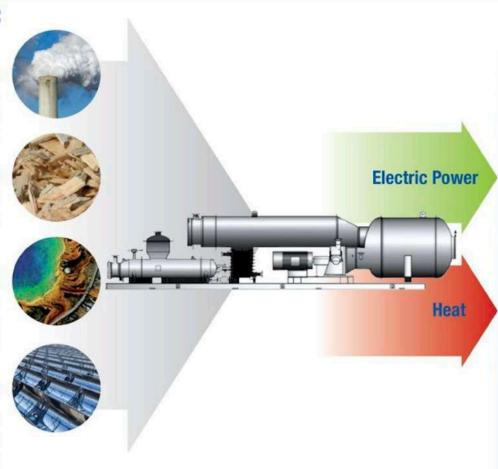
ORC Applications

Applications:

Heat Recovery

ORC units produce electricity by recovering heat from sources such as industrial processes, reciprocating engines, and gas turbines.

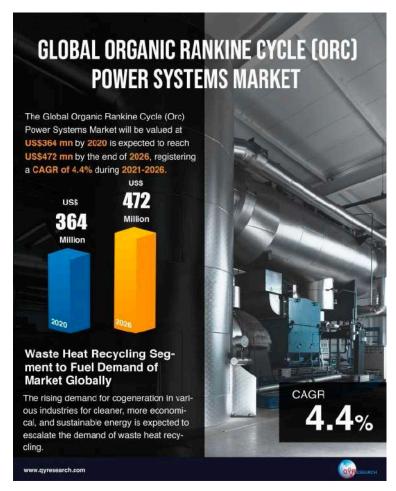
Biomass


ORC units allow simple and efficient generation of electric power and heat from biomass.

Geothermal

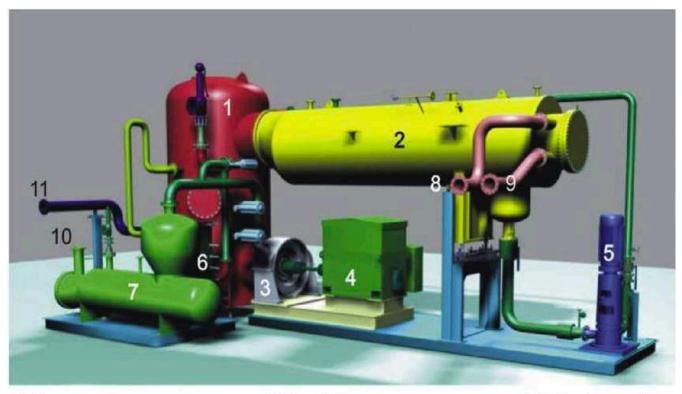
ORC units can produce electricity from geothermal resources with medium-to-low-temperatures, generally ranging between 195° F - 355° F (90° C - 180° C).

Solar Thermal Power


Concentrating solar power systems with Turboden ORC units allow conversion of heat harnessed by solar collectors into electricity through an efficient thermodynamic cycle.

Market Evolution

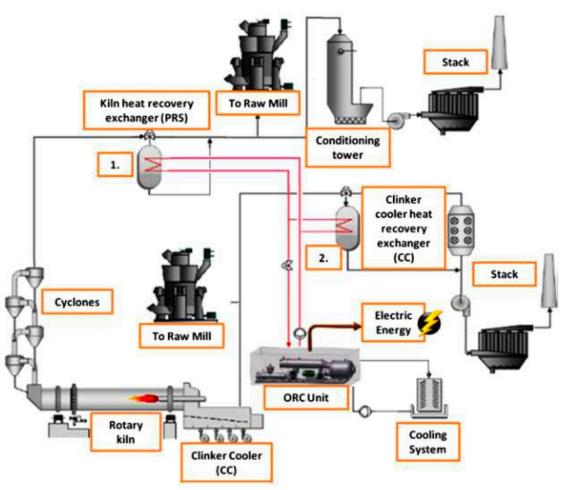
- ✓ Growing market
- √ 3 important markets:
 - Waste heat recovery (WHR): 20%
 - Biomass combined heat & power (CHP): 48%
 - ➤ Geothermal energy: 31%
- ✓ Still few solar applications
- √ Technological maturity >50 kWe
- ✓ Powers <50 kWe: mainly in R&D



ORC Potential Assessment

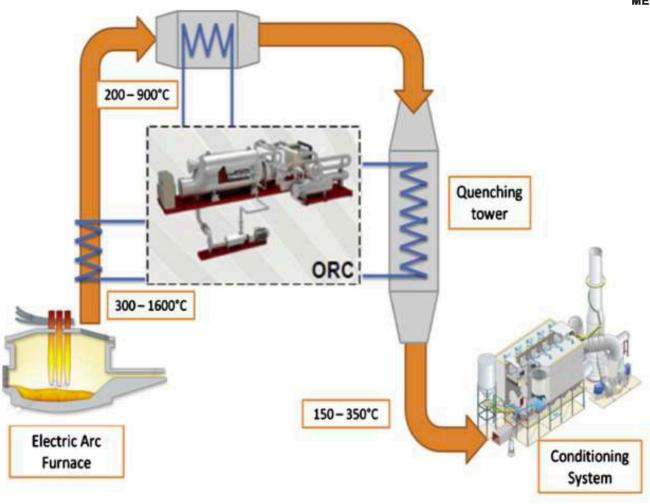
- Requirements:
 - >> Minimum temperature
 - ➤ Minimum thermal power
 - ➤ Minimum running hours
 - > No condensation
 - ➤ Possibility to interfere in the process
- H-REII project: establish which industries fit better ORC opportunities for heat recovery to power:
 - ➤ Cement
 - ➤ Glass
 - Steel
 - > Oil&gas

ORC Components

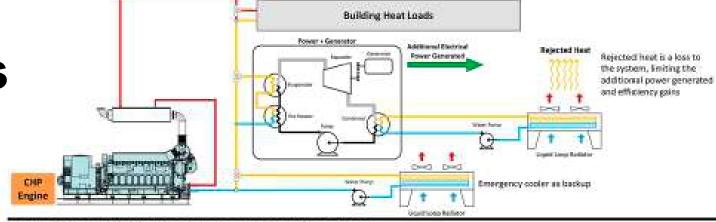

- 1 Regenerator
- 2 Condenser
- 3 Turbine
- 4 Electric generator

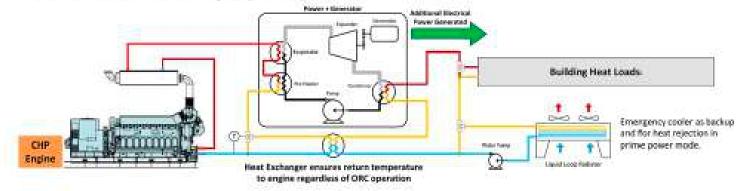
- 5 Circulation pump
- 6 Pre-heater
- 7 Evaporator
- 8 Hot water inlet

- 9 Hot water outlet
- 10 Thermal oil inlet
- 11 Thermal oil outlet



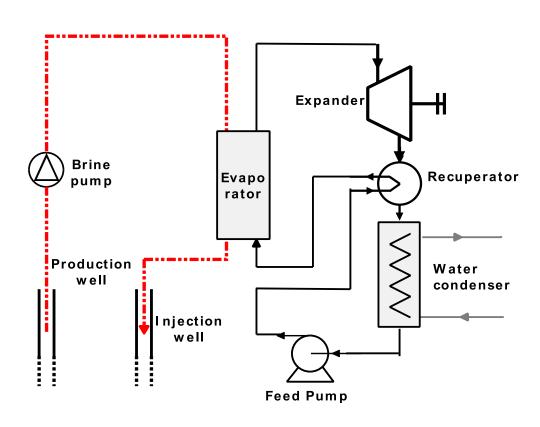
ORC in Cement Industry


ORC in Steel industry

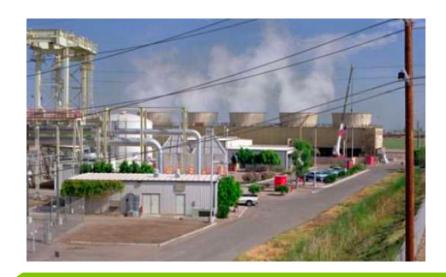


ORC for Diesel Exit Gases

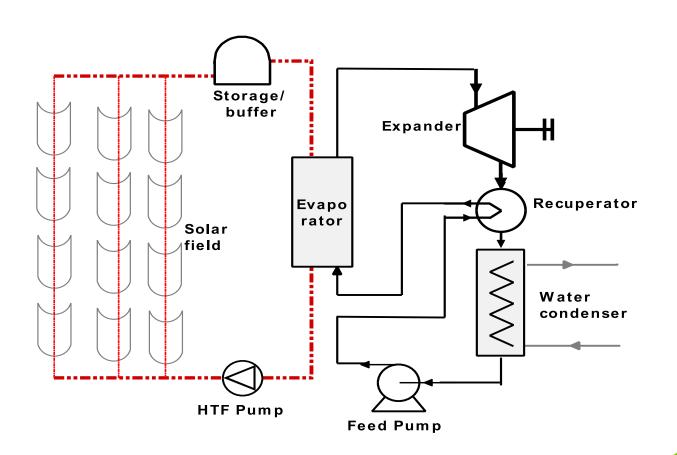
Standard low temp ORC acting as bottoming cycle



Next Gen BHT ORC acting as primary heat use

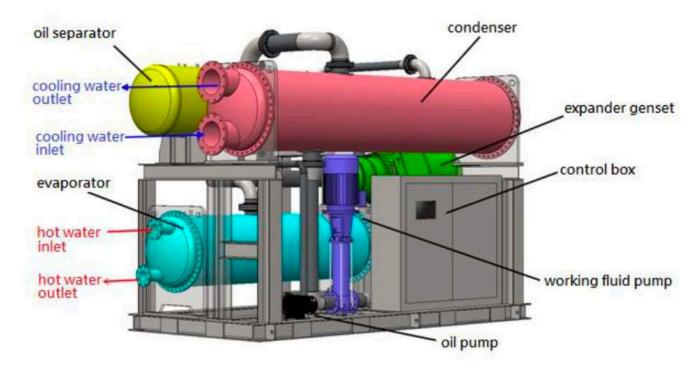


ORC Geothermal



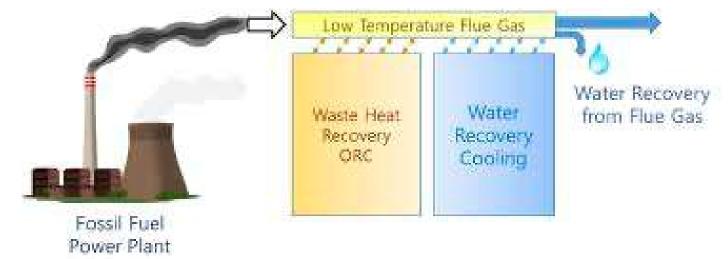
- Similar to WHR technologies
- From 200 kW up to 100 MW
 75 to 300°C

ORC - Solar


Features

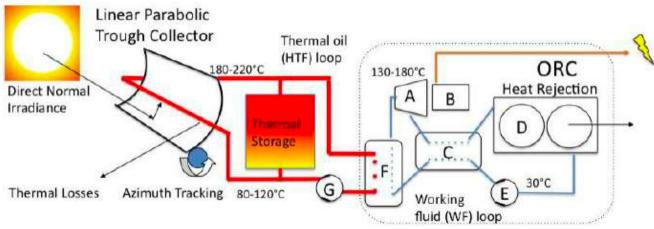
- Proven concept on larger volumetric ORC units
- Very few moving parts and low stress on components
- No friction, no wear there's no metal to metal contact
- Oil Free
- No fluid leaking
- Low maintenance
- Extremely compact units

MAKE THE MOST OUT OF YOUR WASTE HEAT



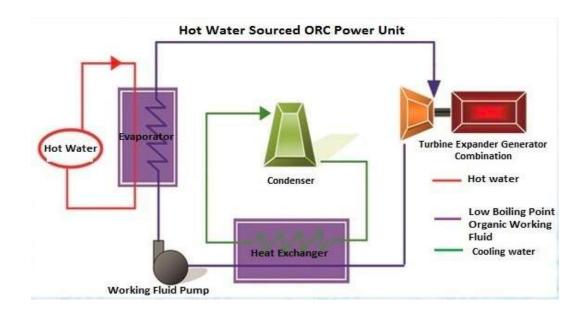
Customised ORC

Heat Source	Hot Water	Hot Oil	Steam	Flue Gas
Temperature	≧80°C	≧80°C	≧ 70° C	≧120°C



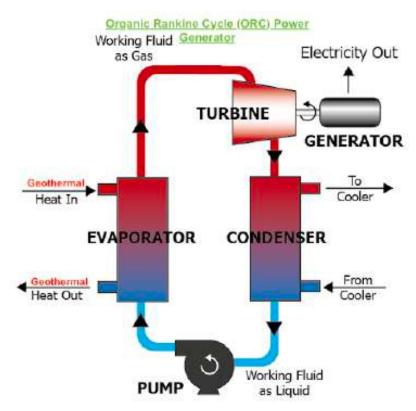
MEDIGREEN ORC Specifications Using Flue Gas

Flue Gas Temp. = 380°C/140°C, Cooling Water Temp. = 25°C/31°C , Working Fluid – Toluene						
Net Power Output (kW)	20	50	100	150	200	250
Thermal input from Flue Gas Kj/Sec	160	358	666	950	1250	1450
Cooling Water Flow (Lit/Sec)	5	10.25	18.5	29	35	45

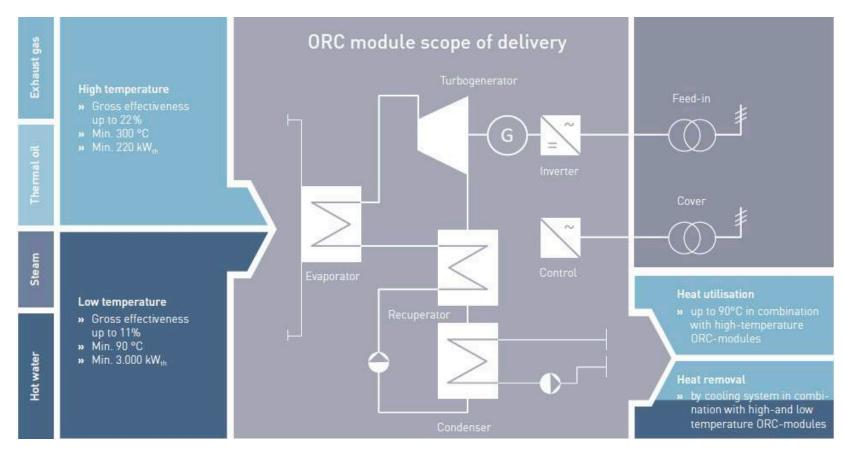


MEDIGREEN ORC Specifications on Hot Oil

Steam Temp. = 280°C/140°C, Cooling Water Temp. = 25°C/31°C, Working Fluid – Toluene						
Net Power Output (kW)	20	50	100	150	200	250
Thermal input from Hot Oil Kj/ Sec	145	300	568	800	1050	1230
Cooling Water Flow (Lit/Sec)	5	10.25	18.5	29	35	45


MEDIGREEN ORC Specifications on Using High Temperature Hot Water

Hot Water Temp. = 130°C/70°C, Cooling Water Temp. = 25°C/31°C, Working Fluid – n Pentane							
Net Power Output (kW)	20	50	100	150	200	250	
Thermal input from Hot Water Kj/Sec	310	625	1100	1500	2000	2500	
Cooling Water Flow (Lit/Sec)	10	21	40	60	75	90	


MEDIGREEN ORC Specifications on Using Low Temperature Hot Water

Hot Water Temp. = 95°C/58°C, Cooling Water Temp. = 25°C/31°C, Working Fluid – R 245 fa						
Net Power Output (kW)(***)	20	50	100	150	200	250
Thermal input from Low Temp Hot Water Kj/Sec	450	1000	1818	2727	3333	4166
Cooling Water Flow (Lit/Sec)	18	36	70	100	130	160

ORC Scope of Delivery

Our Installations

10 KW ORC Sri Ram Industries Delhi

70 KW NGL Tech Malaysia

Patents

Patent No:

286409

Application No:

1699/CHF/2009

Date of Filling:

17/07/2009

SL No:

044101844

GOVERNMENT OF INDIA
PATENT CERTIFICATE

MEDIGREEN ENERGY PVT. LTD.

Door No:2, First Floor M/s
Datta Guru Industries Gat no.53
Dehu Alandi Road Talawade Pune
Maharashtra

www.medigreenenergy.com